博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
使用Presto SQL一些常见问题总结
阅读量:6590 次
发布时间:2019-06-24

本文共 5711 字,大约阅读时间需要 19 分钟。

查询速度慢, 如何优化?

解决方法1: 避免单节点处理

虽然Presto是分布式查询引擎, 但是一些操作是必须在单节点中处理的. 例如:

  • count(distinct x)

    • 考虑使用approx_distinct(x)代替
    • 但是需要注意这个函数有个大约在2.3%的标准误差, 如果需要精确统计的情况, 请绕道.
  • UNION

    UNION有个功能是: 如果两条记录一样, 会只保留一条记录(去重).
    • 如果不考虑去重的情况, 请使用UNION ALL
  • ORDER BY

    Presto对数据排序是作用在单节点上的
    • 如果要排序的数据量超过百万行, 要谨慎考虑. 如果非要排序,尽量将排序的字段减少些.

解决方法2: 减少表扫描的范围

通过添加条件达到减少表扫描的范围.

也可以考虑将大数据量的表, 水平查分, 通过查不同的表分区达到效果.

解决方法3: 避免使用 SELECT * FROM

要明确写出所有要访问的列, 能加快速度.

例如

SELECT * FROM my_table

改成:

SELECT id, name, address FROM my_table

解决方法4: 将几个LIKE语句放到函数regexp_like()

Presto的查询优化器不能改善许多LIKE语句使用的地方, 导致这样的语句查询速度慢.

例如

SELECT  ...FROM  accessWHERE  method LIKE '%GET%' OR  method LIKE '%POST%' OR  method LIKE '%PUT%' OR  method LIKE '%DELETE%'

上面的语句能用regexp_like函数优化成一句

SELECT  ...FROM  accessWHERE  regexp_like(method, 'GET|POST|PUT|DELETE')

如何优化JOIN性能?

尽量让JOIN的条件简单,最好是ON后面的比较表达式两边必涉及计算。

例如

SELECT a.date, b.name FROMleft_table aJOIN right_table bON a.date = CAST((b.year * 10000 + b.month * 100 + b.day) as VARCHAR)

上面的SQL语句的JOIN性能不高,因为JION条件包含了表达式计算。我们可以通过子查询的形式来优化上面的语句。

SELECT a.date, b.name FROMleft_table aJOIN (  SELECT    CAST((b.year * 10000 + b.month * 100 + b.day) as VARCHAR) date,  # generate join key    name  FROM right_table) bON a.date = b.date  # Simple equi-join

上面的语句,就是直接比较两个VARCHAR的值,这样会比比较一个VARCHAR和一个表达式结果的性能高。

我们还能继续优化,使用Presto的WITH语句进行子查询。

WITH b AS (  SELECT    CAST((b.year * 10000 + b.month * 100 + b.day) as VARCHAR) date,  # generate join key    name  FROM right_table)SELECT a.date, b.name FROMleft_table aJOIN bON a.date = b.date

如何使查询简单化

解决方法1: 使用WITH语句

如果你的查询语句非常复杂或者有多层嵌套的子查询,请试着用WITH语句将子查询分离出来。

例如

SELECT a, b, c FROM (   SELECT a, MAX(b) AS b, MIN(c) AS c FROM tbl GROUP BY a) tbl_alias

可以被重写为线面的形式

WITH tbl_alias AS (SELECT a, MAX(b) AS b, MIN(c) AS c FROM tbl GROUP BY a)SELECT a, b, c FROM tbl_alias

同样,也可以将各个步骤的子查询通过WITH语句罗列出来,子查询之间用“,”分割。

WITH tbl1 AS (SELECT a, MAX(b) AS b, MIN(c) AS c FROM tbl GROUP BY a),     tbl2 AS (SELECT a, AVG(d) AS d FROM another_tbl GROUP BY a)SELECT tbl1.*, tbl2.* FROM tbl1 JOIN tbl2 ON tbl1.a = tbl2.a

解决方法2:在CREATE TABLE语句中使用WITH语句

如果CREATE TABLE语句的查询部分很复杂或者潜逃了多层子查询,就需要考虑用WITH语句

例如:

CREATE TABLE tbl_new AS WITH tbl_alias AS (SELECT a, MAX(b) AS b, MIN(c) AS c FROM tbl1)SELECT a, b, c FROM tbl_alias
CREATE TABLE tbl_new AS WITH tbl_alias1 AS (SELECT a, MAX(b) AS b, MIN(c) AS c FROM tbl1),                             tbl_alias2 AS (SELECT a, AVG(d) AS d FROM tbl2)SELECT tbl_alias1.*, tbl2_alias.* FROM tbl_alias1 JOIN tbl_alias2 ON tbl_alias1.a = tbl_alias2.a

解决方法3:用GROUP BY语句时,GROUP BY的目标可用数字代替

在Presto SQL中,GROUP BY语句需要与SELECT语句中的表达式保持一致,不然会提示语法错误。

例如:

SELECT TD_TIME_FORMAT(time, 'yyyy-MM-dd HH', 'PDT') hour, count(*) cntFROM my_tableGROUP BY TD_TIME_FORMAT(time, 'yyyy-MM-dd HH', 'PDT')

上面的SQL语句的GROUP BY部分可以用GROUP BY 1,2,3 ...来表示

SELECT TD_TIME_FORMAT(time, 'yyyy-MM-dd HH', 'PDT') hour, count(*) cntFROM my_tableGROUP BY 1
Note: 这些数字是从1开始的,有别于程序要思维从0开始。

Exceeded max (local) memory 错误

Presto会跟踪每个查询的内存使用情况.可用内存的多少是根据你的查询计划变动的,所以在大多数情况下可以从写查询语句来达到优化内存使用的目的.

下面列出来的就是内存密集型的语句块:

  • district
  • UNION
  • ORDER BY
  • GROUP BY (许多字段的情况)
  • joins (各种JOIN)

解决方法1: 尽量少使用distinct

distinct 会排除所有不唯一的行.下面的例子就是检查你的数据表中是否包含了相同的数据行(c1,c2,c3)

SELECT distinct c1, c2, c3 FROM my_table

上面的操作会存储一整字段c1,c2和c3到presto的单个工作节点的内存, 然后检查(c1,c2,c3)的唯一性. 随着字段的增多以及字段数据量的增大,所需要的内存也会直线上升.

所以, 去掉查询语句中的distinct关键字, 或者只在子查询(有有限少量字段的情况下)使用.

解决方法2: 用approx_distinct(x)代替count(distinct x)

NOTE: approx_distinct(x)会返回一个正确的近似值, 如果只是需要看一个大概的趋势,可以考虑.

解决方法3: 尽量用UNION ALL代替UNION

和distinct的原因类似, UNION有去重的功能, 所以会引发内存使用的问题.

如果你只是拼接两个或者多个SQL查询的结果, 考虑用UNION ALL

解决方法4: 尽量避免ORDER BY

SELECT c1, c2 FROM my_table ORDER BY c1

Presto在排序的时候启用的是单一节点进行工作, 所以整个数据需要在单节点内存限制的范围内, 超过这个内存限制就会报错.

如果你需要排序的数据在一个小的量级, 用ORDER BY没有问题; 如果需要排序的数据在GB的级别,需要考虑其他的解决方案.

例如: 大量级的数据排序可以考虑结合HIVE和presto. 首先, 用Presto将大量的数据存储到一个临时表中,然后用HIVE取对数据排序.

解决方法5: 减少GROUP BY的字段

SELECT avg(c1), min_by(c2, time), max(c3), count(c4), ...FROM my_tableGROUP BY c1, c2, c3, c4, ...

减少GROUP BY语句后面的排序一句字段的数量能减少内存的使用.

解决方法6:用大表取JOIN小表

下面这种用小数据表去JOIN大数据表的查询会极度消耗内存.

SELECT * FROM small_table, large_tableWHERE small_table.id = large_table.id

Presto 会默认执行广播式的JOIN操作,它会将左表拆分到几个工作节点上, 然后发送整个右表分别到已拆分好的处理左表的工作节点上. 如果右表非常大就会超出工作节点的内存限制,进而出错.

所以需要用小表JOIN大表

SELECT * FROM large_table, small_tableWHERE large_table.id = small_table.id

如果左表和右表都比较大怎么办?

  1. 修改配置distributed-joins-enabled (presto version >=0.196)
  2. 在每次查询开始使用distributed_join的session选项
-- set session distributed_join = 'true'SELECT * FROM large_table, large_table1WHERE large_table1.id = large_table.id
核心点就是使用distributed join. Presto的这种配置类型会将左表和右表同时以join key的hash value为分区字段进行分区. 所以即使右表也是大表,也会被拆分.

缺点是会增加很多网络数据传输, 所以会比broadcast join的效率慢.

查询生成的大量数据优化的问题

Presto用JOSN text的形式保存数据。如果查询出来的数据大于100G,Presto将传输大于100G的JSON text来保存查询结果。所以,即使查询处理即将完成,输出这么大的JOSN text也会消耗很长时间。

解决方法1:不要用==SELECT *==

解决方法2:用result_output_redirect='true' 注释

在查询语句前添加注释(result_output_redirect='true'),能让查询更快些。

-- set session result_output_redirect='true'select a, b, c, d FROM my_table

上面的语句能让Presto用并行的方式生成查询结果,能跳过在Presto协调器进行JSON转换的过程。

Note: 但是,如果使用了ORDER BY语句,这个魔术注释将被忽略。

如何拼接字符串

解决方法:用 || 运算符

SELECT 'hello ' || 'presto'

如何在字段包含NULL的情况下 添加default value

解决方法:用COALESCE(v1,v2,...)函数

-- This retuns 'N/A' if name value is nullSELECT COALESCE(name, 'N/A') FROM table1

如何从两个数中选出最大/最小值

解决方法:用greatest / least 函数

SELECT greatest(5, 10) -- returns 10

Binary函数的应用

这里主要的问题是:如何将binary/varbinary类型转换为varchar类型

转换SHA256/MD5

SELECT to_hex(sha256(to_utf8('support@treasure-data.com'))) as emailSELECT to_hex(md5(to_utf8('support@treasure-data.com'))) as email

转换base64

SELECT to_base64(to_utf8('support@treasure-data.com')) as email=> "c3VwcG9ydEB0cmVhc3VyZS1kYXRhLmNvbQ=="SELECT FROM_UTF8(from_base64('c3VwcG9ydEB0cmVhc3VyZS1kYXRhLmNvbQ=='))=> "support@treasure-data.com"

转载地址:http://wgkio.baihongyu.com/

你可能感兴趣的文章
Apache Pulsar中的地域复制,第2篇:模式和实践
查看>>
JetBrains在CLion的Linux和OS X版本中引入Swift支持
查看>>
玩大了,开源协议修改引发MongoDB“大动荡”?
查看>>
独家揭秘:微博深度学习平台如何支撑4亿用户愉快吃瓜?
查看>>
数据不是石油,占得多未必有用
查看>>
IBM提出8位深度网络训练法,提速4倍同时保持高精度
查看>>
64位的Mac OS X也有Windows.Forms了
查看>>
VS 2019要来了,是时候了解一下C# 8.0新功能
查看>>
Chrome 42禁用NPAPI和相关插件:Java、Unity和Silverlight
查看>>
自己动手用PHP编写一个简单的HTTP Server(单进程版)
查看>>
React从入门到精通系列之(19)彻底理解React如何重新处理DOM(Diffing算法)
查看>>
从战争到外包软件开发:如何赢得最后胜利
查看>>
华中科大提出EAT-NAS方法:提升大规模神经模型搜索速度
查看>>
TensorFlow发布1.12.0版本,改善XLA稳定性和性能
查看>>
Box开源持续本土化平台Mojito
查看>>
CentOS 6.5下利用Docker使用Letsencrypt
查看>>
url到一个网页经历的什么
查看>>
为了监视快递小哥,我做了一个小程序!
查看>>
Swift 关联类型
查看>>
[Leetcode] First Missing Positive
查看>>